Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production.

نویسندگان

  • Edurne Baroja-Fernández
  • Francisco José Muñoz
  • Jun Li
  • Abdellatif Bahaji
  • Goizeder Almagro
  • Manuel Montero
  • Ed Etxeberria
  • Maite Hidalgo
  • María Teresa Sesma
  • Javier Pozueta-Romero
چکیده

Sucrose synthase (SUS) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate-glucose and fructose. In Arabidopsis, a multigene family encodes six SUS (SUS1-6) isoforms. The involvement of SUS in the synthesis of UDP-glucose and ADP-glucose linked to Arabidopsis cellulose and starch biosynthesis, respectively, has been questioned by Barratt et al. [(2009) Proc Natl Acad Sci USA 106:13124-13129], who showed that (i) SUS activity in wild type (WT) leaves is too low to account for normal rate of starch accumulation in Arabidopsis, and (ii) different organs of the sus1/sus2/sus3/sus4 SUS mutant impaired in SUS activity accumulate WT levels of ADP-glucose, UDP-glucose, cellulose and starch. However, these authors assayed SUS activity under unfavorable pH conditions for the reaction. By using favorable pH conditions for assaying SUS activity, in this work we show that SUS activity in the cleavage direction is sufficient to support normal rate of starch accumulation in WT leaves. We also demonstrate that sus1/sus2/sus3/sus4 leaves display WT SUS5 and SUS6 expression levels, whereas leaves of the sus5/sus6 mutant display WT SUS1-4 expression levels. Furthermore, we show that SUS activity in leaves and stems of the sus1/sus2/sus3/sus4 and sus5/sus6 plants is ∼85% of that of WT leaves, which can support normal cellulose and starch biosynthesis. The overall data disprove Barratt et al. (2009) claims, and are consistent with the possible involvement of SUS in cellulose and starch biosynthesis in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase.

The entry of carbon from sucrose into cellular metabolism in plants can potentially be catalyzed by either sucrose synthase (SUS) or invertase (INV). These 2 routes have different implications for cellular metabolism in general and for the production of key metabolites, including the cell-wall precursor UDPglucose. To examine the importance of these 2 routes of sucrose catabolism in Arabidopsis...

متن کامل

Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato.

Two differentially regulated classes of sucrose synthase genes, Sus3 and Sus4, were identified in potato. They cannot be classified as Sus1 and Sus2 types based on sequence homology and appear to have evolved after the divergence of the major families of dicotyledonous plants but before the divergence of tomato and potato. The potato sucrose synthase clones Sus3-65 and Sus4-16 share an 87% nucl...

متن کامل

Multiple, distinct isoforms of sucrose synthase in pea.

Genes encoding three isoforms of sucrose synthase (Sus1, Sus2, and Sus3) have been cloned from pea (Pisum sativum). The genes have distinct patterns of expression in different organs of the plant, and during organ development. Studies of the isoforms expressed as recombinant proteins in Escherichia coli show that they differ in kinetic properties. Although not of great magnitude, the difference...

متن کامل

TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase.

In all plant species studied to date, sucrose synthase occurs as multiple isoforms. The specific functions of the different isoforms are for the most part not clear. Six isoforms of sucrose synthase have been identified in the model legume Lotus japonicus, the same number as in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). The genes encoding these isoforms are differentially expre...

متن کامل

Identification and Characterization of the Sucrose Synthase 2 Gene (Sus2) in Durum Wheat

Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase (SUS), which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for SUS in durum wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 1  شماره 

صفحات  -

تاریخ انتشار 2012